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Abstract. We study CP -sensitive observables in the neutralino production e+e− → χ̃0
i χ̃

0
j and the subsequent

two-body decays of the neutralino χ̃0
i → χ0

nZ and of the Z boson Z → ��̄(qq̄). We identify the CP -odd
elements of the Z boson density matrix and propose CP -sensitive triple-product asymmetries. We calculate
these observables and the cross sections in the minimal supersymmetric standard model with complex
parameters µ and M1 for an e+e− linear collider with

√
s = 800 GeV and longitudinally polarized beams.

We show that the asymmetries can reach 3% for Z → ��̄ and 18% for Z → qq̄ and discuss the feasibility
of measuring these asymmetries.

1 Introduction

In theminimal supersymmetric standardmodel (MSSM) [1]
several supersymmetric (SUSY) parameters can be com-
plex. In the neutralino sector of the MSSM these are the
U(1) gaugino mass parameter M1 and the Higgsino mass
parameter µ. (The SU(2) gaugino mass parameter M2 can
be made real by redefining the fields.) The physical phases
ϕM1 and ϕµ of M1 and µ, respectively, imply CP -odd ob-
servables which can in principle be large, because they are
already present at tree level. It has been shown that in
the production of two different neutralinos e+e− → χ̃0

i χ̃
0
j

the CP -violating phases cause a non-vanishing neutralino
polarization perpendicular to the production plane [2–5],
which leads to CP -odd triple-product asymmetries [6] of
the neutralino decay products [4, 5, 7–9].

In this work we study CP -violation in neutralino pro-
duction

e+ + e− → χ̃0
i + χ̃0

j , i, j = 1, . . . , 4, (1)

with the subsequent two-body decay of one neutralino into
the Z boson (for recent studies see [9, 10])

χ̃0
i → χ0

n + Z; n < i, (2)
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and the decay of the Z boson

Z → f + f̄ , f = �, q, � = e, µ, τ, q = c, b. (3)

In case of CP -violation the non-vanishing phases ϕM1 and
ϕµ lead to CP -sensitive elements of the Z boson density
matrix, which we will discuss in detail. Moreover, these
CP -sensitive elements cause CP -odd asymmetries Af in
the decay distribution of the decay fermions [4],

Af =
σ(Tf > 0) − σ(Tf < 0)
σ(Tf > 0) + σ(Tf < 0)

, (4)

with σ the cross section and the triple product

Tf = pe− · (pf × pf̄ ). (5)

Due to the correlations between the χ̃0
i polarization and

the Z boson polarization, there are CP -odd contributions
to the Z boson density matrix and to the asymmetries from
the production (1) and from the decay process (2).

The triple product Tf , (5), changes sign under time
reversal and is thus T -odd. Due to CPT -invariance, the
corresponding T -odd asymmetries Af are also CP -odd
if final state interactions are neglected. The final state
interactions would also contribute to Af . However, they
only arise at loop level and are neglected in the presentwork.

In Sect. 2 we give our definitions and the formalism
used and define the Z boson density matrix. In Sect. 3
we discuss some general properties of the asymmetries.
We present numerical results in Sect. 4. Section 5 gives a
summary and conclusions.
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Fig. 1. Schematic picture of the neutralino production and
decay process

2 Definitions and formalism

We give the analytic formulae for the differential cross
section of the neutralino production

e+ + e− → χ̃0
i (pχi , λi) + χ̃0

j (pχj , λj), (6)

with longitudinally polarized beams and the subsequent
decay chain of one of the neutralinos

χ̃0
i → χ̃0

n(pχn , λn) + Z(pZ , λk), (7)

Z → f(pf , λf ) + f̄(pf̄ , λf̄ ). (8)

In (6), and (7) and (8), p and λ denote momentum and he-
licity, respectively. For a schematic picture of the neutralino
production and decay process see Fig. 1. In the following
we will derive the Z boson spin-density matrix and relate
it to the CP -asymmetry Af in (4).

2.1 Lagrangian and helicity amplitudes

The interaction Lagrangians relevant for our study are (in
our notation and conventions we follow closely [1, 9])

LZ0χ̃0
i χ̃0

j
= 1

2 Zµ
¯̃χ0

i γ
µ

[
O

′′L
ij PL + O

′′R
ij PR

]
χ̃0

j ,

i, j = 1, . . . , 4, (9)

Leẽχ̃0
i

= gfL
eiēPRχ̃0

i ẽL + gfR
ei ēPLχ̃0

i ẽR + h.c., (10)

LZ0ff̄ = Zµf̄γµ[LfPL + RfPR]f, (11)

with PL,R = 1
2 (1∓γ5). In the neutralino basis γ̃, Z̃, H̃0

a , H̃0
b

the couplings are

O
′′L
ij = − 1

2
g

cos θW

×
[
(Ni3N

∗
j3 − Ni4N

∗
j4) cos 2β

+(Ni3N
∗
j4 + Ni4N

∗
j3) sin 2β

]
, (12)

O
′′R
ij = −O

′′L∗
ij , Lf = − g

cos θW
(T3f − qf sin2 θW),

Rf =
g

cos θW
qf sin2 θW, (13)

fL
�i = −

√
2 (14)

×
[

1
cos θW

(T3� − q� sin2 θW)Ni2 + q� sin θWNi1

]
,

fR
�i = −

√
2q� sin θW

[
tan θWN∗

i2 − N∗
i1

]
, (15)

with g the weak coupling constant (g = e/ sin θW, e > 0),
qf and T3f the charge and the isospin of the fermion, and
tanβ = v2/v1 the ratio of the vacuum expectation values of
the two neutral Higgs fields. Nij is the complex unitary 4×4
matrix which diagonalizes the neutral gaugino–Higgsino
mass matrix Yαβ , N∗

iαYαβN†
βk = mχ̃0

i
δik, with mχ̃0

i
> 0.

Note that our definitions of O
′′L,R
ij and Lf , Rf differ from

those given in [1, 3] by a factor of g/ cos θW.
The helicity amplitudes T

λiλj

P for the production pro-
cess are given in [3]. Those for the two-body decays, (7)
and (8), are

Tλnλk

D1,λi
= ū(pχn , λn)γµ

[
O

′′L
ni PL + O

′′R
ni PR

]
u(pχi , λi)ελk∗

µ

(16)

and

T
λf λf̄

D2,λk
= ū(pf , λf )γµ[LfPL + RfPR]v(pf̄ , λf̄ )ελk

µ .

(17)

The polarization vectors ελk
µ , λk = 0,±1, are given in Ap-

pendix A. The amplitude for the whole process (6), (7)
and (8) is

T = ∆(χ̃0
i )∆(Z)

∑
λi,λk

T
λiλj

P Tλnλk

D1,λi
T

λf λf̄

D2,λk
, (18)

with the neutralino propagator ∆(χ̃0
i ) = i/[p2

χi
− m2

χi
+

imχiΓχi ] and the Z boson propagator ∆(Z) = i/[p2
Z −

m2
Z + imZΓZ ] (the mass and width are denoted by m and

Γ , respectively). For these propagators we use the narrow
width approximation.

2.2 Cross section and Z boson density matrix

For the calculation of the cross section for the combined
process of the neutralino production (6) and the subsequent
two-body decays (7) and (8) of χ̃0

i we use the same spin-
density matrix formalism as in [3,11]. The (unnormalized)
spin-density matrix of the Z boson,

ρP (Z)λkλ′
k = |∆(χ̃0

i )|2
∑
λi,λ′

i

ρP (χ̃0
i )

λiλ
′
i ρD1(χ̃0

i )
λkλ′

k

λ′
iλi

,

(19)

is composed of the spin-density production matrix

ρP (χ̃0
i )

λiλ
′
i =

∑
λj

T
λiλj

P T
λ′

iλj ∗
P (20)
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and the decay matrix

ρD1(χ̃0
i )

λkλ′
k

λ′
iλi

=
∑
λn

Tλnλk

D1,λi
T

λnλ′
k∗

D1,λ′
i

. (21)

With the decay matrix for the Z decay,

ρD2(Z)λ′
kλk

=
∑

λf ,λf̄

T
λf λf̄

D2,λk
T

λf λf̄ ∗
D2,λ′

k
, (22)

the amplitude squared for the complete process e+e− →
χ̃0

i χ̃
0
j ; χ̃0

i → χ̃0
nZ; Z → ff̄ can now be written

|T |2 = |∆(Z)|2
∑

λk,λ′
k

ρP (Z)λkλ′
k ρD2(Z)λ′

kλk
. (23)

The differential cross section in the laboratory system is
then given by

dσ =
1
2s

|T |2dLips(s, pχj
, pχn

, pf , pf̄ ), (24)

where dLips(s, pχj
, pχn

, pf , pf̄ ) is the Lorentz invariant
phase space element defined in (B.1) of Appendix B. More
details concerning kinematics and phase space can be found
in Appendices A and B.

For the polarization of the decaying neutralino χ̃0
i with

momentum pχi we introduce three space-like spin vectors
sa

χi
(a = 1, 2, 3), which together with pµ

χi
/mχi

form an
orthonormal set with sa

χi
·sb

χi
= −δab, sa

χi
·pχi

= 0, then the
(unnormalized) neutralino density matrix can be expanded
in terms of the Pauli matrices:

ρP

(
χ̃0

i

)λiλ
′
i = 2

(
δλiλ′

i
P + σa

λiλ′
i
Σa

P

)
, (25)

wherewe sumover a.With our choice of the spin vectors sa
χi

,

given in Appendix A, Σ3
P

P is the longitudinal polarization of

the neutralino χ̃0
i ,

Σ1
P

P is the transverse polarization in the

production plane and Σ2
P

P is the polarization perpendicular
to the production plane. The analytical formulae for P and
Σa

P are given in [3]. To describe the polarization states of the
Z boson, we introduce a set of spin vectors tcZ (c = 1, 2, 3)
and choose polarization vectors ελk

µ (λk = 0,±1), given in
Appendix A. Then we obtain for the decay matrices

ρD1
(
χ̃0

i

)λkλ′
k

λ′
iλi

=
(
δλ′

iλi
Dµν

1 + σa
λ′

iλi
Σa µν

D1

)
ελk∗

µ ε
λ′

k
ν (26)

and

ρD2(Z)λ′
kλk

= Dµν
2 ελk

µ ε
λ′

k∗
ν , (27)

with [9]

Dµν
1 = 2

[
2pµ

χi
pν

χi
−

(
pµ

χi
pν

Z + pν
χi

pµ
Z

)
− 1

2

(
m2

χi
+ m2

χn
− m2

Z

)
gµν

]
|O′′L

ni |2

−2gµνmχimχn

[(
ReO

′′L
ni

)2
−

(
ImO

′′L
ni

)2
]

, (28)

Σa µν
D1

= 2i
{

− mχiε
µανβsa

χiα (pχiβ − pZβ) |O′′L
ni |2

+2mχn

(
saµ

χi
pν

χi
− saν

χi
pµ

χi

) (
ImO

′′L
ni

)
(ReO

′′L
ni )

−mχnεµανβsa
χiαpχiβ

[(
ReO

′′L
ni

)2
−

(
ImO

′′L
ni

)2
]}

(ε0123 = 1), (29)

and

Dµν
2 = 2

(
−2pµ

f̄
pν

f̄ + pµ
Zpν

f̄ + pµ

f̄
pν

Z − 1
2 m2

Zgµν
)(

L2
f + R2

f

)
− 2iεµανβpZαpf̄β

(
L2

f − R2
f

)
. (30)

Due to the Majorana properties of the neutralinos, Dµν
1 is

symmetric and Σa µν
D1 is antisymmetric under interchange

of µ and ν. In (26) and (27) we use the expansion [12]

ελk
µ ε

λ′
k∗

ν = 1
3 δλ′

kλkIµν − i
2mZ

εµνρσpρ
Ztcσ

Z (Jc)λ′
kλk

− 1
2 tcZµtdZν

(
Jcd

)λ′
kλk (ε0123 = 1), (31)

summed over c, d. Here, Jc are the 3 × 3 spin 1 matrices
with [Jc, Jd] = iεcdeJ

e and

Jcd = JcJd + JdJc − 4
3 δcd, (32)

with J11 + J22 + J33 = 0, are the components of the
symmetric, traceless tensor, given in Appendix C, and

Iµν = −gµν +
pZµpZν

m2
Z

(33)

guarantees the completeness relation of the polariza-
tion vectors ∑

λk

ελk∗
µ ελk

ν = −gµν +
pZµpZν

m2
Z

. (34)

The second term in (31) describes the vector polarization
and the third term describes the tensor polarization of the
spin 1 Z boson. The decay matrices can be expanded in
terms of the spin matrices Jc and Jcd. The first term of
the decay matrix ρD1, (26), which is independent of the
neutralino polarization, then gives

Dµν
1 ελk∗

µ ε
λ′

k
ν = D1δ

λkλ′
k + cD1 (Jc)λkλ′

k

+ cdD1
(
Jcd

)λkλ′
k , (35)

summed over c, d, with

D1 =

[
m2

χn
− 1

3 m2
χi

− m2
Z +

4
3

(pχi · pZ)2

m2
Z

]
|O′′L

ni |2

+2mχimχn

[(
ReO

′′L
ni

)2
−

(
ImO

′′L
ni

)2
]

, (36)

cdD1 = −
[
2 (tcZ · pχi) (tdZ · pχi)
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+ 1
2

(
m2

χi
+ m2

χn
− m2

Z

)
δcd

]
|O′′L

ni |2

−δcdmχimχn

[(
ReO

′′L
ni

)2
−

(
ImO

′′L
ni

)2
]

, (37)

and cD1 = 0 due to the Majorana character of the neutrali-
nos. As a consequence of the completeness relation, (34),
the diagonal coefficients are linearly dependent

11D1 + 22D1 + 33D1 = − 3
2 D1. (38)

For large three-momentum pχi , the Z boson will mainly
be emitted into the forward direction with respect to pχi ,
i.e. p̂χi ≈ p̂Z , with p̂ = p/|p|, so that (t1,2

Z · pχi) ≈ 0
in (37). Therefore, for high energies 11D1 ≈ 22D1, and the
contributions for the non-diagonal coefficients cdD1(c �= d)
will be small.

For the second term of ρD1, (26), which depends on the
polarization of the decaying neutralino, we obtain

Σa µν
D1 ελk∗

µ ε
λ′

k
ν (39)

= Σa
D1δ

λkλ′
k + cΣa

D1 (Jc)λkλ′
k + cdΣa

D1
(
Jcd

)λkλ′
k ,

summed over c, d, with

cΣa
D1

=
2

mZ

{[∣∣∣O′′L
ni

∣∣∣2 mχi
+

[(
ReO

′′L
ni

)2
−

(
ImO

′′L
ni

)2
]
mχn

]

×
[(

sa
χi

· pZ

)
(tcZ · pχi) −

(
sa

χi
· tcZ

)
(pZ · pχi)

]
+

∣∣∣O′′L
ni

∣∣∣2 mχi
m2

Z

(
sa

χi
· tcZ

)
(40)

−2
(
ImO

′′L
ni

) (
ReO

′′L
ni

)
mχnεµνρσsaµ

χi
pν

χi
pρ

Ztcσ
Z

}
,

and Σa
D1 = cdΣa

D1 = 0 due to the Majorana character
of the neutralinos. A similar expansion for the Z decay
matrix, (27), results in

ρD2 (Z)λ′
kλk

= D2δ
λ′

kλk +cD2 (Jc)λ′
kλk +cdD2

(
Jcd

)λ′
kλk

,

(41)

where we sum over c, d, with

D2 = 2
3

(
R2

f + L2
f

)
m2

Z , (42)

cD2 = 2
(
R2

f − L2
f

)
mZ

(
tcZ · pf̄

)
, (43)

cdD2 =
(
R2

f + L2
f

) [
2

(
tcZ · pf̄

)
(tdZ · pf̄ ) − 1

2 m2
Zδcd

]
.

(44)

As a consequence of the completeness relation, (34), the
diagonal coefficients are linearly dependent

11D2 + 22D2 + 33D2 = − 3
2 D2. (45)

For large three-momentum pZ , the fermion f̄ will mainly
be emitted into the forward direction with respect to pZ ,

i.e. p̂Z ≈ p̂f̄ , so that (t1,2
Z · pf̄ ) ≈ 0 in (44). Therefore, for

high energies 11D2 ≈ 22D2, and the contributions for the
non-diagonal coefficients cdD2(c �= d) will be small.

Inserting the density matrices (25) and (26) into (19)
leads to

ρP (Z)λkλ′
k = 4 |∆

(
χ̃0

i

)
|2 (46)

×
[
PD1δ

λkλ′
k + Σa

P
cΣa

D1 (Jc)λkλ′
k + P cdD1

(
Jcd

)λkλ′
k

]
,

summed over a, c, d. Inserting then (46) and (27) into (23)
leads to

|T |2 = 4 |∆
(
χ̃0

i

)
|2 |∆ (Z) |2

× [3PD1D2 + 2Σa
P

cΣa
D1

cD2

+ 4P
(
cdDcd

1 D2 − 1
3

ccD1
ddD2

)]
, (47)

summed over a, c, d, which is the decomposition of the
amplitude squared in its scalar (first term), vector (second
term) and tensor part (third term).

2.3 Z boson density matrix

The polarization of the Z boson, produced in the neutralino
decay (7), is given by its 3 × 3 density matrix 〈ρ(Z)〉 with
Tr{〈ρ(Z)〉} = 1. We obtain 〈ρ(Z)〉 in the laboratory sys-
tem by integrating (46) over the Lorentz invariant phase
space element

dLips
(
s, pχj , pχn , pZ

)
=

1
(2π)2

dLips(s, pχi
, pχj

) dsχi

∑
±

dLips
(
sχi

, pχn
, p±

Z

)
,

see (B.1), and normalizing by the trace:

〈ρ(Z)λkλ′
k〉 =

∫
ρP (Z)λkλ′

k dLips∫
Tr{ρP (Z)λkλ′

k} dLips
(48)

= 1
3 δλkλ′

k + Vc (Jc)λkλ′
k + Tcd

(
Jcd

)λkλ′
k ,

summed over c, d. The vector and tensor coefficients Vc

and Tcd are given by

Vc =

∫
|∆

(
χ̃0

i

)
|2 Σa

P
cΣa

D1 dLips
3

∫
|∆ (χ̃0

i ) |2 PD1 dLips
,

Tcd = Tdc =

∫
|∆

(
χ̃0

i

)
|2 P cdD1 dLips

3
∫

|∆ (χ̃0
i ) |2 PD1 dLips

, (49)

with sum over a. The tensor coefficients T12 and T23 vanish
due to phase space integration. The density matrix in the
circular basis, see (A.11), is given by

〈ρ(Z)−−〉 = 1
2 − V3 + T33, (50)

〈ρ(Z)00〉 = −2T33, (51)

〈ρ(Z)−0〉 = 1√
2
(V1 + iV2) −

√
2 T13, (52)
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〈ρ(Z)−+〉 = T11, (53)

〈ρ(Z)0+〉 = 1√
2
(V1 + iV2) +

√
2 T13, (54)

where we have used T11+T22+T33 = − 1
2 and T12 = T23 = 0.

3 T -odd asymmetry

From (47) one obtains for the asymmetry, (4):

Af =
∫

Sign[Tf ]|T |2dLips∫
|T |2dLips

(55)

=

∫
|∆

(
χ̃0

i

)
|2|∆(Z)|2 Sign[Tf ]2Σa

P
cΣa

D1
cD2dLips∫

|∆ (χ̃0
i ) |2|∆(Z)|2 3PD1D2dLips

,

summed over a, c. In the numerator only the vector part
of |T |2 remains because only the vector part contains the
triple product1 Tf = pe− · (pf × pf̄ ). In the denomina-
tor the vector and tensor parts of |T |2 vanish, because
for complete phase space integrations the spin correlations
are eliminated. Due to the correlations between the χ̃0

i
and the Z boson polarization, Σa

P
cΣa

D1, there are CP -odd
contributions to the asymmetry Af which stem from the
neutralino production process, see (6), and/or from the
neutralino decay process, see (7). The contribution from
the production is given by the term with a = 2 in (55)
and it is proportional to Σ2

P , (25), which is the transverse
polarization of the neutralino perpendicular to the pro-
duction plane. For e+e− → χ̃0

i χ̃
0
i we have Σ2

P = 0. The
contributions from the decay, which are the terms with
a = 1, 3 in (55), are proportional to

cΣa
D1

cD2 ⊃

−8mχn

(
ImO

′′L
ni

) (
ReO

′′L
ni

) (
R2

f − L2
f

) (
tcZ · pf̄

)
×εµνρσsaµ

χi
pν

χi
pρ

Ztcσ
Z , (56)

see last term of (40), which contains the ε-tensor. Thus
Af can be enhanced (reduced) if the contributions from
production and decay have the same (opposite) sign. Note
that the contributions from the decay would vanish for a
two-body decay of the neutralino into a scalar particle. In
this case the remaining contributions from the production
are multiplied by a decay factor ∝ (|R|2 − |L|2) [7], and
thus Af ∝ (|R|2 − |L|2)/(|R|2 + |L|2), where R and L
are the right and left couplings of the scalar particle to
the neutralino.

For the measurement of Af the charges and the flavors
of f and f̄ have to be distinguished. For f = e, µ this
will be possible on an event by event basis. For f = τ
it will be possible after taking into account corrections
due to the reconstruction of the τ momentum. For f = q

1 Note that if one would replace the triple product Tf by
Tf = pe− · (pχi × pZ), and would calculate the corresponding
asymmetry, where the Z boson polarization is summed, all spin
correlations and thus this asymmetry would vanish identically
because of the Majorana properties of the neutralinos.

the distinction of the quark flavors should be possible by
flavor tagging in the case q = b, c [13]. However, in this
case the quark charges will be distinguished statistically
for a given event sample only [14]. Note that Aq is always
larger than A�, due to the dependence of Af on the Z-f̄ -f
couplings [4, 9]:

Af ∝
R2

f − L2
f

R2
f + L2

f

⇒ (57)

Ab(c) =
R2

� + L2
�

R2
� − L2

�

R2
b(c) − L2

b(c)

R2
b(c) + L2

b(c)
A� � 6.3 (4.5) × A�,

which follows from (42), (43) and (55).
The relative statistical error of Af is given by δAf =

∆Af/|Af | = Sf/(|Af |
√

N) [7], with Sf standard devi-
ations and N = L · σt the number of events with L the
integrated luminosity and the cross section σt = σ(e+e− →
χ̃0

i χ̃
0
j ) × BR(χ̃0

i → Zχ̃0
n) × BR(Z → ff̄). Taking δAf = 1

it follows Sf = |Af |
√

N . Note that Sf is larger for f = b, c
than for f = � = e, µ, τ withSb � 7.7×S� andSc � 4.9×S�,
which follows from (57) and from BR(Z → bb̄) � 1.5 ×
BR(Z → ��̄), BR(Z → cc̄) � 1.2 × BR(Z → ��̄).

4 Numerical results

We present numerical results for the Z density matrix
〈ρ(Z)〉, (49), the asymmetry A�(� = e, µ, τ), (4), and the
cross section σt = σ(e+e− → χ̃0

i χ̃
0
j ) × BR(χ̃0

i → χ̃0
1Z) ×

BR(Z → ��̄). For the branching ratio Z → ��̄, summed over
� = e, µ, τ , we take the experimental value BR(Z → ��̄) =
0.1 [15]. The values for Ab,c may be obtained from (57).
We choose a center of mass energy of

√
s = 800 GeV

and longitudinally polarized beams with beam polariza-
tions (Pe− , Pe+) = (±0.8,∓0.6). We study the depen-
dence of 〈ρ(Z)〉, A� and σt on the MSSM parameters
µ = |µ| ei ϕµ andM1 = |M1| ei ϕM1 . For all scenarioswe keep
tanβ = 10. In order to reduce the number of parameters,
we assume the relation |M1| = 5/3M2 tan2 θW and use the
renormalization group equations [16] for the selectron and
smuon masses, m2

�̃R
= m2

0 + 0.23M2
2 − m2

Z cos 2β sin2 θW,

m2
�̃L

= m2
0 + 0.79M2

2 + m2
Z cos 2β(−1/2 + sin2 θW), taking

m0 = 300 GeV.
Our numerical results presented below are obtained at

tree level. One-loop corrections to e+e− → χ̃0
i χ̃

0
j have been

given in [17] for real MSSM parameters. They are of the
order of a few percent and may reach values up to 10%.
As the bulk of the one-loop corrections are presumably
CP -even, we expect that they will not significantly change
our tree-level result for Af . For an appropriate analysis of
the one-loop corrections to Af it would be necessary to
adopt the formulae of [17] to the case of complex MSSM
parameters, which is beyond the scope of the present paper.

The experimental upper limits on the electric dipole
moments (EDMs) of electron and neutron may restrict the
phases ϕµ and ϕM1 . These restrictions are very model de-
pendent. They are less severe when cancellations between
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Fig. 2. Contour plots for
a σ(e+e− → χ̃0

1χ̃
0
2), b BR(χ̃0

2 →
Zχ̃0

1), c σt = σ(e+e− → χ̃0
1χ̃

0
2) ×

BR(χ̃0
2 → Zχ̃0

1) × BR(Z → ��̄)
with BR(Z → ��̄) = 0.1, (2d)
the asymmetry A�, in the |µ|–
M2 plane for ϕM1 = 0.5π,
ϕµ = 0, taking tan β = 10,
m0 = 300 GeV,

√
s = 800 GeV

and (Pe− , Pe+) = (−0.8, 0.6).
The area A (B) is kinematically
forbidden by mχ̃0

1
+ mχ̃0

2
>

√
s

(mZ + mχ̃0
1

> mχ̃0
2
). In area C of

plot (2b) BR(χ̃0
2 → Zχ̃0

1) = 100%.
The gray area is excluded by
m

χ̃±
1

< 104 GeV

the contributions of different SUSY phases occur. For ex-
ample, in the constrained MSSM the phase ϕµ is restricted
to |ϕµ| � 0.1π, whereas the phase ϕM1 is not restricted, but
correlated with ϕµ [18]. In most of our numerical examples
below we have chosen ϕM1 = ±π/2, ϕµ = 0, which agrees
with the constraints from the electron and neutron EDMs.
In order to show the full phase dependences of the CP -
asymmetry Af , in one example we study its ϕµ behavior
in the whole ϕµ range, relaxing in this case the restrictions
from the EDMs. However, as shown in [19], if also lepton
flavor violating terms are included, the EDM constraints
on ϕµ disappear.

For the calculation of the neutralino widths Γχi and
the branching ratios BR(χ̃0

i → χ̃0
1Z) we neglect three-

body decays and include the following two-body decays, if
kinematically allowed,

χ̃0
i → ẽR,Le, µ̃R,Lµ, τ̃mτ, ν̃�ν̄�, χ̃0

nZ, χ̃∓
mW±, χ̃0

nH0
1 ,

� = e, µ, τ, m = 1, 2, n < i (58)

with H0
1 being the lightest neutral Higgs boson. The Higgs

parameter is chosen mA = 1000 GeV and thus the decays
χ̃0

i → χ̃±
n H∓ into the charged Higgs bosons, and the decays

χ̃0
i → χ̃0

n H0
2,3 into the heavy neutral Higgs bosons are

forbidden in our scenarios. In the stau sector, we fix the
trilinear scalar coupling parameter Aτ = 250 GeV.

4.1 Production of χ̃0
1 χ̃0

2

In Fig. 2a we show the cross section for χ̃0
1χ̃

0
2 production

in the |µ|–M2 plane for ϕµ = 0 and ϕM1 = 0.5π. For
|µ| � 250 GeV the left selectron exchange dominates due to
the larger χ̃0

2–ẽL coupling, so that the choice of polarization
(Pe− , Pe+) = (−0.8, 0.6) enhances the cross section, which
reaches values of more than 110 fb.

The branching ratio BR(χ̃0
2 → Zχ̃0

1) is shown in Fig. 2b.
The branching ratio can even be 100% and decreases with
increasing |µ| and M2, when the two-body decays into
sleptons and/or into the lightest neutral Higgs boson are
kinematically allowed.
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Fig. 3. Contour lines of the asymmetry A� for e+e− →
χ̃0

1χ̃
0
2; χ̃0

2 → Zχ̃0
1; Z → ��̄(� = e, µ, τ), in the ϕµ–ϕM1 plane

for M2 = 250 GeV and |µ| = 400 GeV, taking tan β = 10,
m0 = 300 GeV,

√
s = 800 GeV and (Pe− , Pe+) = (−0.8, 0.6)

The cross section σt = σ(e+e− → χ̃0
1χ̃

0
2) × BR(χ̃0

2 →
Zχ̃0

1) × BR(Z → ��̄) is shown in Fig. 2c. Due to the small
branching ratio BR(Z → ��̄) = 0.1, σt does not exceed 7 fb.

Figure 2d shows the |µ|–M2 dependence of the asym-
metry A� for ϕM1 = 0.5π and ϕµ = 0. The asymmetry
|A�| can reach a value of 1.6%. On contour 0 in Fig. 2d,
the (positive) contributions from the production cancel the
(negative) contributions from the decay.

We also studied the ϕµ dependence of A�. In the |µ|–M2
plane for ϕM1 = 0 and ϕµ = 0.5π we found |A�| < 0.5%.

In Fig. 3 we show the ϕµ–ϕM1 dependence of A� for
|µ| = 400 GeV and M2 = 250 GeV. The value of A� de-
pends stronger on ϕM1 than on ϕµ. It is remarkable that
the maximal phases of ϕM1 , ϕµ = ±π/2 do not lead to
the highest values of A� ≈ ±1.4%, which are reached for
(ϕM1 , ϕµ) ≈ (±0.3π, 0). The reason for this is that the
spin-correlation terms Σa

P
cΣa

D1
cD2 in the numerator of

Af , (55), are products of CP -odd and CP -even factors.
The CP -odd (CP -even) factors have a sine-like (cosine-
like) phase dependence. Therefore, the maximum of the
CP -asymmetry Af is shifted from ϕM1 , ϕµ = ±π/2 to a
smaller or larger value.

In the ϕµ–ϕM1 region shown in Fig. 3 also the cross
section σt = σ(e+e− → χ̃0

1χ̃
0
2)×BR(χ̃0

2 → Zχ̃0
1)×BR(Z →

��̄) with BR(χ̃0
2 → Zχ̃0

1) = 1 and BR(Z → ��̄) = 0.1, is
rather insensitive to ϕµ and ranges between 7 fb (ϕM1 = 0)
and 14 fb (ϕM1 = ±π).

For the leptonic decay of the Z, the standard deviations
are given by S� = |A�|

√
L · σt, and for the hadronic decays

by Sb(c) = 7.7(4.9)S�; see Sect. 3. For L = 500 fb−1 and
(ϕM1 , ϕµ) = (±0.3π, 0) in Fig. 3 we find Sb(c) = 8(5) and
thus Ab(c) could be measured. However note that we have
S� < 1 in this scenario and thus A� cannot be measured
at the 68% confidence level (S� = 1).

In Fig. 4 we show the ϕM1 dependence of the vector (Vi)
and tensor (Tii) elements of the Z density matrix 〈ρ(Z)〉.

Fig. 4. Dependence on ϕM1 of the vector (Vi) and tensor
(Tii) elements of the Z density matrix < ρ(Z) >, for e+e− →
χ̃0

1χ̃
0
2; χ̃0

2 → Zχ̃0
1, for M2 = 250 GeV and |µ| = 400 GeV, tak-

ing ϕµ = 0, tan β = 10, m0 = 300 GeV,
√

s = 800 GeV and
(Pe− , Pe+) = (−0.8, 0.6)

The elements T11, T22 and V1 have a CP -even behavior.
The element V2 is CP -odd and is not only zero at ϕM1 = 0
and ϕM1 = π, but also at ϕM1 ≈ (1±0.2)π, which is due to
the destructive interference of the contributions from CP -
violation in production and decay. The interference of the
contributions from the CP -even effects in production and
decay cause the two maxima of V1. As discussed in Sect. 2.2,
the tensor elementsT11 andT22 are almost equal. Compared
to V1 and V2, they have the same order of magnitude, but
their dependence on ϕM1 is rather weak. Furthermore, the
other elements are small, i.e. T13, V3 < 10−6 and thus
the density matrix 〈ρ(Z)〉 assumes a symmetric shape.
In the CP -conserving case, e.g. for ϕM1 = ϕµ = 0, M2 =
250 GeV, |µ| = 400 GeV, tanβ = 10, m0 = 300 GeV,

√
s =

800 GeV and (Pe− , Pe+) = (−0.8, 0.6) it reads

〈ρ(Z)〉 =


 0.329 0.049 0.0003

0.049 0.343 0.049
0.0003 0.049 0.329


 . (59)

In the CP -violating case, e.g. for ϕM1 = 0.5π and the other
parameters as above, 〈ρ(Z)〉 has imaginary parts due to a
non-vanishing V2:

〈ρ(Z)〉 = (60)
 0.324 0.107 + 0.037i 0.0003

0.107 − 0.037i 0.352 0.107 + 0.037i
0.0003 0.107 − 0.037i 0.324


 .

Imaginary parts of 〈ρ(Z)〉 are thus an indication of CP -
violation. Note that also the diagonal elements, being CP -
even quantities, are changed for ϕM1 �= 0 and ϕµ �= 0. This
fact has been exploited in [10] as a possibility to determine
the CP -violating phases.
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Fig. 5. Contour lines of σt =
σ(e+e− → χ̃0

2χ̃
0
2) × BR(χ̃0

2 →
Zχ̃0

1)×BR(Z → ��̄) a, and the asym-
metry A� b in the |µ|–M2 plane for
ϕM1 = 0.5π, ϕµ = 0, taking tan β =
10, m0 = 300 GeV,

√
s = 800 GeV

and (Pe− , Pe+) = (−0.8, 0.6). The
area A (B) is kinematically forbid-
den by mχ̃0

2
+ mχ̃0

2
>

√
s (mZ +

mχ̃0
1

> mχ̃0
2
)

4.2 Production of χ̃0
2 χ̃0

2

In Fig. 5a we show the cross section σt = σ(e+e− →
χ̃0

2χ̃
0
2) × BR(χ̃0

2 → Zχ̃0
1) × BR(Z → ��̄) in the |µ|–M2

plane for ϕµ = 0 and ϕM1 = 0.5π. The production cross
section σ(e+e− → χ̃0

2χ̃
0
2), which is not shown, is enhanced

by the choice (Pe− , Pe+) = (−0.8, 0.6) and reaches values
up to 130 fb. The branching ratio BR(χ̃0

2 → Zχ̃0
1), shown in

Fig. 2b, can be 100%. However, due to the small branching
ratio BR(Z → ��̄) = 0.1, the cross section shown in Fig. 5a
does not exceed 13 fb.

If two equal neutralinos are produced, the CP -sensitive
transverse polarization of the neutralinos perpendicular to
the production plane vanishes, Σ2

P = 0 in (55). However,
the asymmetry Af need not vanish, because there are CP -
sensitive contributions from the neutralino decay process,
terms with a = 1, 3 in (56). In Fig. 5b we show the |µ| and
M2 dependence of the asymmetry A�, which reaches more
than 3% for ϕM1 = 0.5π and ϕµ = 0. Along the zero contour
in Fig. 5b the contribution to A� which is proportional to
Σ1

P , see (55), cancels the one which is proportional to Σ3
P .

As the largest values of A� � 0.2% and Aq � 1% lie in
a region of the |µ|–M2 plane where σt � 0.3 fb, it will be
difficult to measure Af in a statistically significant way.
We also studied the ϕµ dependence of A�. In the |µ|–M2
plane for ϕM1 = 0 and ϕµ = 0.5π we found |A�| < 0.5%,
and thus the influence of ϕµ is also small.

In Fig. 6 we show the ϕM1 dependence of the vector (Vi)
and tensor (Tii) elements of the Z density matrix 〈ρ(Z)〉.
Because there are only CP -sensitive contributions from
the neutralino decay process, V2 is only zero at ϕM1 =
0, π and V1 has one maximum at ϕM1 = π, compared
to the elements shown in Fig. 4. In addition, in Fig. 6 the
vector elements V1 and V2 are much smaller than the tensor
elements T11 ≈ T22, compared to Fig. 4. The smallness of
the vector element V2 accounts for the smallness of the
asymmetry |A�| < 0.05%. Furthermore, the other elements
are small, i.e. T13 < 10−6 and V3 = 0.

Fig. 6. Dependence on ϕM1 of the vector (Vi) and tensor
(Tii) elements of the Z density matrix 〈ρ(Z)〉, for e+e− →
χ̃0

2χ̃
0
2; χ̃0

2 → Zχ̃0
1, for M2 = 250 GeV and |µ| = 400 GeV, tak-

ing ϕµ = 0, tan β = 10, m0 = 300 GeV,
√

s = 800 GeV and
(Pe− , Pe+) = (−0.8, 0.6)

4.3 Production of χ̃0
1 χ̃0

3

In Fig. 7a we show the cross section σt = σ(e+e− →
χ̃0

1χ̃
0
3) × BR(χ̃0

3 → Zχ̃0
1) × BR(Z → ��̄) in the |µ|–M2

plane for ϕµ = 0 and ϕM1 = 0.5π. The production cross
section σ(e+e− → χ̃0

1χ̃
0
3), which is not shown, is enhanced

by the choice (Pe− , Pe+) = (0.8,−0.6) and reaches up to
50 fb. The branching ratio BR(χ̃0

3 → Zχ̃0
1), which is not

shown, can be 1. However, due to the small branching ratio
BR(Z → ��̄) = 0.1, the cross section shown in Fig. 7a does
not exceed 5 fb.

In Fig. 7b we show the |µ|–M2 dependence of the asym-
metry A�. The asymmetry |A�| reaches 1.3% at its maxi-
mum, however in a region, where σt < 0.3 fb; the asymme-
try A� thus cannot be measured. We also studied the ϕµ

dependence of A�. In the |µ|–M2 plane for ϕM1 = 0 and
ϕµ = 0.5π we found |A�| < 0.7%.
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Fig. 7. Contour lines of σt =
σ(e+e− → χ̃0

1χ̃
0
3) × BR(χ̃0

3 →
Zχ̃0

1)×BR(Z → ��̄) a, and the asym-
metry A� b in the |µ|–M2 plane for
ϕM1 = 0.5π, ϕµ = 0, taking tan β =
10, m0 = 300 GeV,

√
s = 800 GeV

and (Pe− , Pe+) = (0.8, −0.6). The
area A (B) is kinematically forbid-
den by mχ̃0

1
+ mχ̃0

3
>

√
s (mZ +

mχ̃0
1

> mχ̃0
3
). The gray area is ex-

cluded by m
χ̃±
1

< 104 GeV

Fig. 8. Contour lines of σt =
σ(e+e− → χ̃0

2χ̃
0
3) × BR(χ̃0

3 →
Zχ̃0

1)×BR(Z → ��̄) a, and the asym-
metry A� b in the |µ|–M2 plane for
ϕM1 = 0.5π, ϕµ = 0, taking tan β =
10, m0 = 300 GeV,

√
s = 800 GeV

and (Pe− , Pe+) = (0.8, −0.6). The
area A (B) is kinematically forbid-
den by mχ̃0

2
+ mχ̃0

3
>

√
s (mZ +

mχ̃0
1

> mχ̃0
3
). The gray area is ex-

cluded by m
χ̃±
1

< 104 GeV

4.4 Production of χ̃0
2 χ̃0

3

For the process e+e− → χ̃0
2χ̃

0
3 we discuss the decay χ̃0

3 →
Zχ̃0

1 of the heavier neutralino which has a larger kinemat-
ically allowed region than that of χ̃0

2 → Zχ̃0
1. Similar to

χ̃0
1 χ̃0

3 production and decay, the cross section σ(e+e− →
χ̃0

2χ̃
0
3) reaches values up to 50 fb for a beam polarization of

(Pe− , Pe+) = (0.8,−0.6). The cross section for the complete
processσt = σ(e+e− → χ̃0

2χ̃
0
3)×BR(χ̃0

3 → Zχ̃0
1)×BR(Z →

��̄) attains values up to 5 fb in the |µ|–M2 plane; see Fig. 8a.
The asymmetry A�, Fig. 8b, is somewhat larger than

the asymmetry for χ̃0
1 χ̃0

3 production and decay and reaches
a maximum of 2%. Although in the respective region the
cross section is also a bit larger, σt � 4 fb, it will be difficult
to measure A�. For example taking |µ| = 380 GeV, M2 =
560 GeV and (ϕM1 , ϕµ) = (0.5π, 0), we have S� ≈ 1, for
L = 500 fb−1. However for the hadronic decays of the Z
we have Sb(c) ≈ 8(5) and thus Ab(c) could be measured for
χ̃0

1 χ̃0
3 production. Concerning the ϕµ dependence of A� we

found that |A�| � 1% in regions of the |µ|–M2 plane where
σt � 0.5 fb, and |A�| � 0.4% in regions where σt � 5 fb,
for example for ϕµ = 0.5π and ϕM1 = 0.

5 Summary and conclusions

We have proposed and analyzed CP -sensitive observables
in neutralino production e+e− → χ̃0

i χ̃
0
j and the subsequent

two-body decay of one neutralino into the Z boson χ̃0
i →

χ0
nZ, followedby thedecayZ → ��̄ for � = e, µ, τ , orZ → qq̄

for q = c, b. The CP -sensitive observables are defined by
the vector component V2 of the Z boson density matrix and
the CP -asymmetry A�(q), which involves the triple product
T�(q) = pe− · (p�(q) ×p�̄(q̄)). The tree-level contributions to
these observables are due to correlations of the neutralino
χ̃0

i spin and the Z boson spin. In a numerical study of
the MSSM parameter space with complex M1 and µ for
χ̃0

1χ̃
0
2, χ̃0

2χ̃
0
2, χ̃0

1χ̃
0
3 and χ̃0

2χ̃
0
3 production, we have shown

that the asymmetry A� can go up to 3%. For the hadronic
decays of the Z boson, larger asymmetries are obtained with
Ac(b) � 6.3(4.5)×A�. By analyzing their statistical errors,
we found that the asymmetries Ac(b) could be accessible in
future electron positron linear collider experiments in the
500–800 GeV rangewith high luminosity and longitudinally
polarized beams.
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A Coordinate frame and spin vectors

We choose a coordinate frame in the laboratory system
such that the momentum of the neutralino χ̃0

j points in
the z-direction (in our definitions we follow closely [3]).
The scattering angle is θ = ∠(pe− ,pχj

) and the azimuth
φ can be chosen zero. The momenta are given by

pe− = Eb(1,− sin θ, 0, cos θ),

pe+ = Eb(1, sin θ, 0,− cos θ), (A.1)

pχi = (Eχi , 0, 0,−q), pχj = (Eχj , 0, 0, q), (A.2)

with the beam energy Eb =
√

s/2 and

Eχi =
s + m2

χi
− m2

χj

2
√

s
, Eχj =

s + m2
χj

− m2
χi

2
√

s
,

q =
λ

1
2

(
s, m2

χi
, m2

χj

)
2
√

s
, (A.3)

where mχi , mχj are the masses of the neutralinos and
λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz). We choose
the three spin vectors sa,µ

χi
(a = 1, 2, 3) of the neutralino

in the laboratory system by

s1
χi

= (0,−1, 0, 0), s2
χi

= (0, 0, 1, 0),

s3
χi

=
1

mχi

(q, 0, 0,−Eχi
) . (A.4)

Together with pµ
χi

/mχi they form an orthonormal set. For
the two-body decay χ̃0

i → χ̃0
nZ the decay angle θ1 =

∠(pχi ,pZ) is constrained by sin θmax
1 = q0/q for q > q0,

where q0 = λ
1
2 (m2

χi
, m2

Z , m2
χn

)/2mZ is the neutralino mo-
mentum if the Z boson is produced at rest. In this case
there are two solutions:

|p±
Z | =

{(
m2

χi
+ m2

Z − m2
χn

)
q cos θ1

±Eχi

[
λ

(
m2

χi
, m2

Z , m2
χn

)
− 4q2m2

Z

(
1 − cos2 θ1

)] 1
2
}

/
{
2q2 (

1 − cos2 θ1
)

+ 2m2
χi

}
. (A.5)

If q0 > q, θ1 is not constrained and there is only the
physical solution |p+

Z | left. The momenta in the laboratory
system are

p±
Z =

(
E±

Z ,−|p±
Z | sin θ1 cos φ1, |p±

Z | sin θ1 sin φ1,

−|p±
Z | cos θ1

)
, (A.6)

pf̄ =
(
Ef̄ ,−|pf̄ | sin θ2 cos φ2, |pf̄ | sin θ2 sin φ2,

−|pf̄ | cos θ2
)
, (A.7)

Ef̄ = |pf̄ | =
m2

Z

2
(
E±

Z − |p±
Z | cos θD2

) , (A.8)

with θ2 = ∠(pχi ,pf̄ ) and the decay angle θD2 = ∠(pZ ,pf̄ )
given by

cos θD2 = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ2 − φ1). (A.9)

The spin vectors tc,µ
Z (c = 1, 2, 3) of the Z boson in the

laboratory system are chosen by

t1Z =
(

0,
t2
Z × t3

Z

|t2
Z × t3

Z |

)
, t2Z =

(
0,

pe− × pZ

|pe− × pZ |

)
,

t3Z =
1

mZ

(
|pZ |, EZ

pZ

|pZ |

)
. (A.10)

The spin vectors and pµ
Z/mZ form an orthonormal set. The

polarization vectors ελk,µ for helicities λk = −1, 0, +1 of
the Z boson are defined by

ε− = 1√
2

(
t1Z − it2Z

)
;

ε0 = t3Z ; (A.11)

ε+ = − 1√
2

(
t1Z + it2Z

)
.

B Phase space

The Lorentz invariant phase space element for the neu-
tralino production (6) and the decay chain (7) and (8) can
be decomposed into the two-body phase space elements:

dLips
(
s, pχj , pχn , pf , pf̄

)
=

1
(2π)2

dLips
(
s, pχi

, pχj

)
(B.1)

× dsχi

∑
±

dLips
(
sχi

, pχn
, p±

Z

)
dsZdLips

(
sZ , pf , pf̄

)
,

dLips
(
s, pχi , pχj

)
=

q

8π
√

s
sin θ dθ, (B.2)

dLips
(
sχi , pχn , p±

Z

)
=

1
2(2π)2

|p±
Z |2

2|E±
Z q cos θ1 − Eχi

|p±
Z ||

dΩ1, (B.3)

dLips
(
sZ , pf , pf̄

)
=

1
2(2π)2

|pf̄ |2

m2
Z

dΩ2, (B.4)

with sχi
= p2

χi
, sZ = p2

Z and dΩi = sin θi dθi dφi. We
use the narrow width approximation for the propagators:∫

|∆
(
χ̃0

i

)
|2dsχi = π

mχi
Γχi

,
∫

|∆(Z)|2dsZ = π
mZΓZ

. The
approximation is justified for (Γχi/mχi

)2 � 1, which holds
in our case with Γχi � O(1 GeV).
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C Spin matrices

In the basis (A.11) the spin matrices Jc and the tensor
components Jcd are

J1 =




0 1√
2

0
1√
2

0 1√
2

0 1√
2

0


 , J2 =




0 i√
2

0
− i√

2
0 i√

2
0 − i√

2
0


 ,

J3 =


−1 0 0

0 0 0
0 0 1


 , (C.1)

J11 =


− 1

3 0 1
0 2

3 0
1 0 − 1

3


 , J22 =


− 1

3 0 −1
0 2

3 0
−1 0 − 1

3


 ,

J33 =


 2

3 0 0
0 − 4

3 0
0 0 2

3


 , (C.2)

J12 =


 0 0 i

0 0 0
−i 0 0


 , J23 =




0 − i√
2

0
i√
2

0 i√
2

0 − i√
2

0


 ,

J13 =




0 − 1√
2

0
− 1√

2
0 1√

2
0 1√

2
0


 . (C.3)
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